
nt of

PHYSICAL REVIEW E 66, 066116 ~2002!
Microstructure and velocity of field-driven solid-on-solid interfaces:
Analytic approximations and numerical results
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The local structure of a solid-on-solid interface in a two-dimensional kinetic Ising ferromagnet or attractive
lattice-gas model with single-spin-flip Glauber dynamics, which is driven far from equilibrium by an applied
field or chemical potential, is studied by an analytic mean-field, nonlinear-response theory@P. A. Rikvold and
M. Kolesik, J. Stat. Phys.100, 377~2000!#, and by dynamic Monte Carlo simulations. The probability density
of the height of an individual step in the surface is obtained, both analytically and by simulation. The width of
the probability density is found to increase dramatically with the magnitude of the applied field, with close
agreement between the theoretical predictions and the simulation results. Excellent agreement between theory
and simulations is also found for the field dependence and anisotropy of the interface velocity. The joint
distribution of nearest-neighbor step heights is obtained by simulation. It shows increasing correlations with
increasing field, similar to the skewness observed in other examples of growing surfaces.
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I. INTRODUCTION

The motion of surfaces and interfaces plays a central
in many scientific and technological disciplines. In particul
the dynamics of interfaces such as phase and grain bo
aries in solid materials@1# and domain walls in magnets@2#
and ferroelectrics heavily influence both dynamic and st
material properties. Among interfaces characteristic of tw
dimensional systems are steps on crystal surfaces@3#, do-
main walls in thin magnetic and dielectric films@2#, and
boundaries between different types of vegetation such as
vanna and rainforest@4#.

An enormous amount of work in recent years has b
devoted to the dynamics and structure of moving and gr
ing interfaces@5,6#. However, despite the fact that many im
portant interface properties, such as mobility and catal
and chemical activity, are largely determined by themicro-
scopic interface structure, most of this effort has been co
centrated on large-scale scaling properties. Although the
tailed atomistic mechanisms by which interfaces move
often not known, useful understanding can be obtained fr
stochastic models in which the motion occurs through r
dom nucleation and migration of local topological featur
such as kinks and steps@1#. It is therefore important to gain
better insight for different stochastic dynamics into how t
driving force~such as an applied magnetic or electric field
chemical-potential difference, or the amount of rainfall in t
case of models of vegetation distribution! may alter the mi-
croscopic structure of the interface, thereby leading to
highly nonlinear velocity response.

*Electronic address: rikvold@csit.fsu.edu
†Electronic address: kolesik@acms.arizona.edu
1063-651X/2002/66~6!/066116~12!/$20.00 66 0661
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In a previous paper@7#, we introduced a dynamic mean
field approximation for the microstructure of an interface in
two-dimensional kinetic Ising ferromagnet with a singl
spin-flip Glauber dynamic@8,9#, driven by an applied field
@10,11#. This model is directly applicable to many magne
and ferroelectric systems and other cases where the inte
dynamics are not inhibited by coupling to a conserved fi
@12,13#. Based on the resulting local interface structure,
obtained a nonlinear-response approximation for the stea
state propagation velocity, which was shown to be in go
agreement with dynamic Monte Carlo~MC! simulations for
a wide range of fields and temperatures. However, since
approximation was based on the Burton-Cabrera-Fr
~BCF! unrestricted solid-on-solid~SOS! model @14#, the
overhangs and bubbles in the Ising interface were handle
an uncontrolled way. Here we therefore consider the per
mance of our approximation for the unrestricted SOS mod
so that overhangs and bubbles are absent at all times
definition of the model. In particular, we obtain the surfa
velocity under the Glauber dynamic as a function of appl
field and temperature, as well as its anisotropy for tilt ang
between 0° and 45°.

In a recent paper@15#, we showed that the microscopi
interface structure, and thus the mobility, can depend d
matically on the details of the dynamics. The most signific
difference is between dynamics in which the transition pro
abilities of the individual spins factorize into one part th
depends only on the change in interaction energy due to
transition and one that depends only on the change in
field energy~soft dynamics@16#!, and dynamics that canno
be factorized in this way~hard dynamics@16#!. For soft dy-
namics, the interface structure for all values of the field
mains thesameas in equilibrium at zero field@15#, so that a
linear-response approximation yields an exact result for
©2002 The American Physical Society16-1
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P. A. RIKVOLD AND M. KOLESIK PHYSICAL REVIEW E 66, 066116 ~2002!
propagation velocity. In the present paper we concentrate
the standard Glauber dynamic@8,9#, which belongs to the
class of hard dynamics and thus leads to a more complic
and interesting behavior.

Both the driven Ising and SOS surfaces belong to
Kardar-Parisi-Zhang ~KPZ! dynamic universality class
@5,17#, in which the macroscopic, stationary distribution f
flat, moving interfaces is Gaussian, corresponding to a
dom walk with independent increments. Nevertheless,
step heights in several discrete models in this class are
related atshortdistances@18–20#. In the mean-field approxi-
mation developed here, these short-range correlations ar
nored. The resulting discrepancies, which are minor, will
elucidated by comparison with MC simulations.

The remainder of this paper is organized as follows.
Sec. II we introduce the SOS interface model and deriv
linear-response approximation for its velocity in a nonze
external field. In Sec. III we develop a mean-field appro
mation for the time evolution of the single-step probabil
density function~PDF!, as well as for its stationary form
The latter enables us to extend the approximation for
interface structure and velocity to a nonlinear-response le
The analytical approximations are compared with dynam
MC simulations in Sec. IV. In Sec. IV A we numericall
solve the mean-field equation of motion for the single-s
PDF and compare the resulting values of the time-depen
average interface step height with MC simulations. In S
IV B we compare the simulated stationary single-step PD
with the theoretical predictions. In Sec. IV C we compare
simulated stationary interface velocity with the theoreti
predictions for various values of applied field, temperatu
and interface tilt angle. In Sec. IV D we compare simulatio
and analytical predictions for the detailed stationary interf
structure, including the asymmetry of the simulated interfa
at nonzero fields. A summary and conclusion are found
Sec. V.

II. MODEL AND DYNAMICS

The original BCF SOS model considers an interface i
lattice gas orS51/2 Ising system on a square lattice of un
lattice constant as a single-valued integer functionh(x) of
the x coordinate, with stepsd(x)5h(x11/2)2h(x21/2) at
integer values ofx. A typical SOS interface configuration i
shown in Fig. 1. In this paper, like in Refs.@7,15#, we use the
highly symmetric Ising language, in which the two possib
states of the site (x,y) are denoted by the two ‘‘spin’’ value
sx,y561. ~In order that the step positions and the interfa
heights be integer as stated above, we place the spins a
half-integer values ofx andy, i.e., at the centers of the un
cells separated by dotted lines in Fig. 1.! The configuration
energy is given by the nearest-neighbor Ising Hamilton
with anisotropic, ferromagnetic interactionsJx andJy in the
x andy direction, respectively:

H52(
x,y

sx,y~Jxsx11,y1Jysx,y111H !, ~1!

where(x,y runs over all sites. The quantityH is the applied
‘‘field,’’ and the interface is introduced by fixingsx,y511
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and21 for large negative and positivey, respectively. With-
out loss of generality we takeH>0, such that the interface
on average moves in the positivey direction. This Ising
model is equivalent to a lattice-gas model with local occu
tion variablescx,yP$0,1% @21,22#. Specifically, we identify
s511 with c51 ~occupied or ‘‘solid’’! ands521 with c
50 ~empty or ‘‘fluid’’ !. The applied field is related to th
lattice-gas chemical potentialm as H5(m2m0)/2, where
m0524(Jx1Jy) is the coexistence value ofm. In this paper
we use Ising or lattice-gas language interchangeably as
feel it makes a particular aspect of the discussion cleare

A single-spin-flip~nonconservative! dynamic which satis-
fies detailed balance, such as the Metropolis or Glauber
gorithms@8,9#, ensures the approach to equilibrium, which
this case is a uniformly positive phase with the interfa
pushed off to positive infinity. Such algorithms are defin
by a single-spin transition probability,W(sx,y→2sx,y)
5W(bDE,bU). Hereb is the inverse of the temperatureT
~Boltzmann’s constant is taken as unity!, DE is the energy
change corresponding to a successful spin flip, and the
tional parameterU is an energy barrier between the tw
states that enters into Arrhenius-type stochastic dynam
@23# and other dynamics that include a transition state@24#.
The detailed-balance condition~valid for transitions between
allowed states! is expressed as W(bDE,bU)/
W(2bDE,bU)5e2bDE, where the right-hand side is inde
pendent ofU. ~In the case of soft dynamics, the detaile
balance condition is satisfied independently for the two pa
of W.! In order to preserve the SOS configuration at
times, flips are allowed only at sites which have exactly o
broken bond in they direction.

With the Ising Hamiltonian there are only a finite numb
of different values ofDE, and the spins can therefore b

FIG. 1. A short segment of an SOS interfacey5h(x) between a
positively magnetized phase~or ‘‘solid’’ phase in the lattice-gas
picture! below and a negative~or ‘‘fluid’’ ! phase above. The ste
heights ared(x)5h(x11/2)2h(x21/2). Interface sites represen
tative of the different SOS spin classes~see Table I and Table II! are
marked with the notationjks explained in the text. Sites in the
uniform bulk phases are 002 and 001. This interface was gener
ated with a symmetric step-height distribution, corresponding tof
50, but it would be impossible to estimatef accurately from the
short segment shown here. After Ref.@7#.
6-2
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MICROSTRUCTURE AND VELOCITY OF FIELD-DRIVEN . . . PHYSICAL REVIEW E66, 066116 ~2002!
divided into classes@11,25,26#, labeled by the spin values
and the number of broken bonds between the spin and
nearest neighbors in thex and y direction, j and k, respec-
tively. The ten spin classes consistent with the SOS mo
are denotedjks with j P$0,1,2% and kP$0,1%. They are
shown in Fig. 1 and listed in Table I and Table II.

TABLE I. The spin classes in the anisotropic square-lattice S
model. The first column contains the class labels,jks. The second
column contains the total field and interaction energy for a spin
each class,E( jks), relative to the energy of the state with all spin
parallel andH50, E0522(Jx1Jy). The third column contains
the change in the total system energy resulting from reversal
spin from s to 2s, DE( jks). In both E( jks)2E0 and DE( jks),
the upper sign corresponds tos521, and the lower sign tos5
11.

Class,jks E( jks)2E0 DE( jks)

01s a 6H12Jy 72H14Jx

11s a 6H12(Jx1Jy) 72H
21s a 6H12(2Jx1Jy) 72H24Jx

10s b 6H12Jx 72H14Jy

20s b 6H14Jx 72H24(Jx2Jy)

aThe classes having nonzero populations in the SOS model an
which flipping a spin preserves the SOS configuration.
bThe classes having nonzero populations in the SOS model an
which flipping a spin would produce an overhang or a bubble an
therefore forbidden.
06611
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In this paper, as in Ref.@7#, we use the standard discret
time ~hard! Glauber dynamic with the transition probabilit
@8,9#

WG~sx,y→2sx,y!5@11ebDE#21 ~2!

for all transitions that are allowed by the SOS constra
Time is measured in MC steps per spin~MCSS!.

In the BCF SOS model the heights of the individual ste
are assumed to be statistically independent and identic
distributed. The step-height PDF is given by the interact
energy corresponding to theud(x)u brokenJx-bonds between
spins in the columns centered at (x21/2) and (x11/2) as

p@d~x!#5Z~f!21Xud(x)ueg(f)d(x). ~3!

The Boltzmann factorX5e22bJx determines the width of the
PDF, andg(f) is a Lagrange multiplier which maintains th
mean step height at anx-independent value,̂d(x)&5tanf,
wheref is the overall angle between the interface and thx
axis. The partition function is

Z~f!5 (
d52`

1`

Xudueg(f)d5
12X2

122X coshg~f!1X2
, ~4!

with g(f) given by

eg(f)5
~11X2!tanf1@~12X2!2tan2f14X2#1/2

2X~11tanf!
~5!
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TABLE II. The mean populations for the spin classes of the SOS interface, with the corresponding contributions to the interface
under the hard Glauber dynamic. The first column contains the class labels,jks. The second column contains the mean spin-class pop
tions for general tilt anglef, with coshg(f) from Eq.~5!. The third and fourth columns contain the spin-class populations forf50 @using
g(0)50] andf545° „using Eq.~7! for exp@g(45°)#…, respectively. UsingX5e22bJx in these expressions yields the linear-response re
in which the spin-class populations are evaluated forH50. Using X5X(T,H) from Eq. ~17! with the transition probabilities of the
particular dynamic used@here, Glauber, so thatX(T,H) is explicitly given by Eq.~18!#, one gets the nonlinear-response approximation. T
fifth column contains the contributions to the mean interface velocity in they direction from spins in classesjk2 and jk1, Eq. ~9!, using
the SOS-preserving hard Glauber dynamic.

Class,jks ^n( jks)&, generalf ^n( jks)&, f50 ^n( jks)&, f545° ^vy( jk)&

01s
122X coshg~f!1X2

~12X2!2

1

~11X!2

1

2~11X2!

tanh~bH!

11Fsinh~2bJx!

cosh~bH! G2
11s

2X@~11X2!coshg~f!22X#

~12X2!2

2X

~11X!2

1
2

tanh(bH)

21s
X2@122X coshg~f!1X2#

~12X2!2

X2

~11X!2

X2

2~11X2!

tanh~bH!

11Fsinh~2bJx!

cosh~bH! G2

10s

2X2

12X2 H2 cosh2g~f!2122X coshg~f!1X2

122X coshg~f!1X2

2
X2@122X coshg~f!1X2#

~12X2!2 J
2X2~112X!

~12X2!~11X!2

112X213X4

2~12X4!
0

20s
X4@122X coshg~f!1X2#

~12X2!3

X4

~12X2!~11X!2

X4

2~12X4!
0

6-3
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P. A. RIKVOLD AND M. KOLESIK PHYSICAL REVIEW E 66, 066116 ~2002!
~see details in Ref.@7#!. Simple results are obtained forf
50, which yieldsg(0)50 and

Z~0!5~11X!/~12X!, ~6!

and forf545°, which yields

eg(45°)5~11X2!/2X ~7!

and

Z~45°!52~11X2!/~12X2!. ~8!

The mean spin-class populations^n( jks)& are all obtained
from the product of the independent PDFs ford(x) and
d(x11). Symmetry ofp@d(x)# under the transformation
(x,f,d)→(2x,2f,2d) ensures that^n( jk2)&5^n( jk
1)& for all j andk. Numerical results illustrating the break
down of this up/down symmetry for largeuHu are discussed
in Sec. IV D. As discussed in Ref.@7#, calculation of the
individual class populations is straightforward but somew
tedious, especially for nonzerof. The final results are sum
marized in Table II.

Whenever a spin flips from21 to 11, the corresponding
column of the interface advances by one lattice constan
they direction. Conversely, the column recedes by one lat
constant when a spin flips from11 to 21. The correspond-
ing energy changes are given in the third column in Tabl
Since the spin-class populations on both sides of the in
face are equal in this approximation, the contribution to
mean velocity in they direction from sites in the classe
jk2 and jk1 becomes

^vy~ jk !&5W„bDE~ jk2 !,bU…2W„bDE~ jk1 !,bU….
~9!

The results corresponding to the hard Glauber transi
probabilities used here, Eq.~2!, are listed in the last column
of Table II. The mean propagation velocity perpendicular
the interface becomes

^v'~T,H,f!&5cosf(
j ,k

^n~ jks!&^vy~ jk !&, ~10!

where the sum runs over the classes included in the tab
While the general result is cumbersome if written out in d
tail, the special cases off50 andf545° lead to compac
formulas

^v'~T,H,0!&5
tanh~bH !

~11X!2 H 2X1
11X2

11Fsinh~2bJx!

cosh~bH ! G2J
~11!

and

^v'~T,H,45°!&5
tanh~bH !

2A2 H 11
1

11Fsinh~2bJx!

cosh~bH ! G2J ,

~12!
06611
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-respectively. It was shown in Ref.@7# that Eq.~10! reduces to
the results for the single-step@10,11,27,28# and the poly-
nuclear growth@10,29,30# models at low temperatures fo
strong and weak fields, respectively.

III. NONLINEAR RESPONSE

With X5e22bJx, the results in Table II correspond to
linear-response approximation. In Ref.@7# we developed a
mean-field approximation leading to a field-depend
X(T,H), based on a detailed-balance argument for the
tionary state. Here we show that this detailed-balance r
tion follows naturally from a dynamic mean-field approxim
tion for the equation of motion for the single-step PD
during the approach to the stationary state.

We denote the total transition probability for the height

FIG. 2. Figure for calculating the single-step transition rates
Eq. ~14!. Interface configurations are shown by bold line segme
Spins above~in front of! the interface equal21, and spins below
~behind! the interface equal11. At the center is shown a ste
d(0)>1 @here shown asd(0)511]. A transition tod(0)11 can
be effected by flipping either of the two spins in the dashed box
The resulting configurations, which depend on the heights of
neighboring steps, are shown to the right and left in the figure.
corresponding energy changes and conditions on the neighbo
step heights are given next to the arrows. The arrows pointing
ward from the center of the figure correspond to the transition
scribed above, while the arrows pointing toward the center co
spond to the reverse transition,d(0)11→d(0). In this figure,J
stands forJx . After Ref. @7#.
6-4
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the single step atx to change fromd(x) to d(x)61 as
W @d(x)→d(x)61#. In terms of these transition probabil
ties, the equation of motion for the single-step PD
p@d(x),t# becomes

dp@d~x!,t#

dt
52p@d~x!,t#$W @d~x!→d~x!21#

1W @d~x!→d~x!11#%

1p@d~x!11#W @d~x!11→d~x!#

1p@d~x!21#W @d~x!21→d~x!#, ~13!

where the coupling to the joint multistep probability dens
is hidden in the single-step transition ratesW ~not to be
confused with the single-site transition ratesW).

To obtain an approximation forW @d→d61#, we em-
ploy the same mean-field assumption of independent step
in equilibrium. Ford(x)>1 to increase tod(x)11, either
the spin in front of the interface atx11/2 can flip from21
to 11, or the spin behind the interface atx21/2 can flip
from 11 to 21. In each of these cases,DE can have two
different values, depending on the value ofd(x11) and
d(x21), respectively. The same argument holds also for
reverse transition,d(x)11→d(x). The energy changes an
corresponding conditions ond(x11) and d(x21), which
are shown in Fig. 2, yield

W @d→d61,t#5
1

2
$@W~22H !1W~12H !#P6~ t !

1@W~22H14Jx!1W~12H14Jx!#

3@12P6~ t !#%,
s
t

te
t

q

c
-

s

t

06611
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e

W @d61→d,t#5
1

2
$@W~22H !1W~12H !#@12P7~ t !#

1@W~22H24Jx!1W~12H24Jx!#

3P7~ t !%, ~14!

where the upper signs refer tod>11 and the lower signs to
d<21, P1(t)5(d511

1` p@d,t#, and P2(t)
5(d521

2` p@d,t#. For simplicity, we here write the single-site
transition ratesW(bDE,bU) asW(DE).

In the stationary limit, Eqs.~13! and ~3! lead to the
detailed-balance condition

X~T,H !e6g(f)[
p@d61#

p@d#
5

W @d→d61#

W @d61→d#
, ~15!

where the upper and lower signs have the same interpreta
as in Eq.~14!. Using Eqs.~3! and ~4!, we get the stationary
values forP1 andP2 ,

P15
Xeg(f)~12Xe2g(f)!

12X2
,

P25
Xe2g(f)~12Xeg(f)!

12X2
, ~16!

which, when inserted together with Eq.~14! in Eq. ~15!,
yield a self-consistency equation forX. The self-consistency
equation reduces to a linear equation forX2, and with the
help of the detailed-balance condition for the single-site tr
sition ratesW, the solution takes the form
X~T,H !5e22bJxH e22bHW~22H24Jx!1e2bHW~12H24Jx!

W~22H24Jx!1W~12H24Jx!
J 1/2

, ~17!
e-

-
n-

ro-
n
tion
er-
the
a-
which is independent ofg(f). This solution is the same a
the one obtained in Ref.@7#, but the derivation given in tha
paper did not explicitly show that all dependence ong(f)
cancels out. The fact thatX(T,H) does not depend ong(f)
is fortunate, since it enables both quantities to be calcula
analytically. If this were not the case, they would have had
be determined by simultaneous numerical solution of E
~17! and ~5!.

Equation~17! shows thatX(T,H) depends on the specifi
dynamic, except forH50, where it reduces to its equilib
rium value,X(T,0)5e22bJx. A situation in which theH de-
pendence in Eq.~17! cancels out, is that of the soft dynamic
discussed in Sec. I.~The barrier energyU can be contained
in one or the other of the factors.! In Ref. @15# we demon-
strated that a soft dynamic yields an SOS interface tha
identical to the equilibrium SOS interface atH50 and the
same temperature, regardless of the value ofH. Neither the
d
o
s.

is

Glauber dynamic used here, nor the equally common M
tropolis dynamic with transition probabilityWM(sx,y→
2sx,y)5min@1,e2bDE# @8,9#, satisfies this factorization con
dition. Such hard dynamics lead to a nontrivial field depe
dence inX. Inserting the Glauber dynamic defined by Eq.~2!
into Eq. ~17!, we explicitly get

XG~T,H !5e22bJxH e2bJxcosh~2bH !1e22bJx

e22bJxcosh~2bH !1e2bJx
J 1/2

.

~18!

All the results for the spin-class populations of the ze
field equilibrium interface, which are listed in Table II, ca
now be applied to obtain a nonlinear-response approxima
for the steady-state propagation velocity of flat, driven int
faces with hard dynamics. This simply requires replacing
zero-fieldX5e22bJx used in the linear-response approxim
6-5
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P. A. RIKVOLD AND M. KOLESIK PHYSICAL REVIEW E 66, 066116 ~2002!
tion by the field-dependentX(T,H), obtained from Eq.~17!
using the transition probabilities corresponding to the p
ticular dynamic used. For soft dynamics the linear-respo
result withX5e22bJx is exact.

A physical reason for the marked difference between h
and soft dynamics is best seen by comparing concrete
amples of dynamics in the two classes, such as the h
Glauber dynamic used here, Eq.~2!, and the soft Glaube
dynamic used in Ref.@15#,

WSG~sx,y→2sx,y!5
e2bDEH

11e2bDEH

e2bDEJ

11e2bDEJ
, ~19!

in the case of a very strong field. In the hard case, the ef
of the field completely dominates the transition rates, s
that the rate is near unity for transitions that bring a s
parallel to the applied field, and near zero for transitions
the opposite direction,irrespective of the change in interac
tion energy. In the soft case, the probability of bringing
spin antiparallel to the field is also near zero, but the pr
abilities of different transitions bringing a spin parallel to t
field differ according to the corresponding change in the
teraction energy, as given by the second factor in Eq.~19!.

In the following section we show that the nonlinea
response approximation developed in this section gives v
good agreement with MC simulations of driven, flat SO
interfaces evolving under the hard Glauber dynamic fo
wide range of fields and temperatures.

IV. COMPARISON WITH MONTE CARLO SIMULATIONS

We have compared the analytical estimates of step-he
distributions, propagation velocities, and spin-class pop
tions developed above with MC simulations of the sa
model for Jx5Jy5J. The details of our particular imple
mentation of the discrete-timen-fold way rejection-free MC
algorithm @25# are the same as described in Ref.@7#, except
that only transitions from the classes with one brokeny bond
(k51) are allowed. By keeping only the interface sites
memory, the algorithm is not subject to any size restriction
the y direction, and simulations can be carried out for ar
trarily long times.

The numerical results presented here are based on
simulations at the two temperatures,T50.2Tc and 0.6Tc

@Tc522J/ ln(A221)'2.269J is the critical temperature fo
the isotropic, square-lattice Ising model@31##, with Lx
510 000 and fixedf between 0 and 45°. In order to ensu
stationarity we ran the simulation for 5 000n-fold way up-
dates per updatable spin~UPS! before taking any measure
ments (100 000 UPS for some of the strongest fields
largest values off at T50.2Tc). Exploratory simulations
with both larger and smallerLx ~up to 100 000) and ‘‘warm-
up’’ times ~see Sec. IV A! showed that the values used in th
production runs were sufficient to ensure a stationary in
face. Stationary class populations and interface veloci
were averaged over 50 000 UPS. In the stationary limi
UPS corresponds to between 2 MCSS for strong fields
both temperatures, and about 75 MCSS forH50 at T
50.2Tc . Adequate statistics for one- and two-step PDFs w
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ensured by the largeLx , ten times the value used in Ref
@7,32#.

A. Approach to the stationary state

In order to both check the applicability of the mean-fie
approximation at early times, and decide the approxim
time needed to reach the stationary state, we first studied
transient behavior of the average step height^udu& for f
50 at T50.2J and 0.6J.

In the dynamic MC simulation̂udu& was measured during
a ‘‘time window’’ which was opened after a specified numb
of UPS, corresponding to a given approximate average e
lution time t in MCSS. To obtain an optimum balance b
tween time resolution and accuracy, the width of the wind
was varied from approximately one MCSS at early times
about ten MCSS at late times, and five independent r
were performed for each value oft. Standard errors fort and
^udu& were estimated in the usual way as the empirical st
dard deviation in their measured values over the five real
tions, divided byA5.

For comparison with the MC simulations, we solved t
mean-field equation of motion for the single-step PD
Eq. ~13!, numerically by a first-order iterative scheme with
time step of 1024 MCSS ~shorter time steps made no di
cernible difference!. Both the simulations and the solution o
the equation of motion were started from a sharp interfac
t50. Results for fields between 0 and 10J are shown in
Fig. 3.

In general, we find overall qualitative agreement betwe
the simulations and the equation of motion. ForT50.2Tc
anduHu<2J, both methods have reached a common stati
ary value byt510 000 MCSS, while forT50.6Tc and uHu
<3J, stationarity is reached byt51 000 MCSS. Our choice
of 5000 UPS as ‘‘warm-up time’’ in our studies of the st
tionary properties, corresponding to at least 10 000 MCSS
thus well justified. However, there are significant quantitat
differences between the simulation results and the solutio
Eq. ~13! for early times. We believe this indicates that th
mean-field assumption of statistically independent s
heights is not well justified until the interface structure h
been randomized through a sufficient number of updates

For the extremely strong field,H510J, W (d→d61)
'W (d61→d)'1/2 @see Eq.~14!#, with equality in the
limit H/J→`. In this limit the evolution of the interface
width is essentially diffusional and̂udu&}t1/2 without satu-
ration at any finite time. Thus, the growth changes from
KPZ universality class for finite fields~with increasing satu-
ration value of̂ udu& asH increases!, to the universality class
of the random-deposition model@5#, in which ^udu& grows
without bound, for infinite field. As seen in Fig. 3~b!, both
methods agree with this result, although the amplitude
the MC simulation is larger than predicted by the mean-fi
equation of motion.

B. Stationary single-step probability densities

Stationary single-step PDFs were obtained by MC sim
lation atT50.2Tc and 0.6Tc for f50 and several values o
H between 0 and 3.0J. The simulation results forp@d# are
6-6
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shown in Fig. 4, together with the theoretical result, Eq.~3!
with X(T,H) from Eq. ~18!. For both temperatures, th
agreement is excellent in the whole range ofd andH shown.

A simple comparison between the analytical and simu
tion results is given in Fig. 5~a!, which showŝ udu& vs H for
f50 atT50.2Tc and 0.6Tc . The solid curves represent th
theoretical result obtained by summation of Eq.~3!, ^udu&
52X/(12X2), with X from Eq. ~18!. There is excellent
agreement between the theoretical field dependence an
MC data. Additional confirmation of the form of the single
step PDF, Eq.~3!, is obtained from the simulation results b
calculating^udu&, both directly by summation over the nu
merically obtained PDF and from the probability of zero st
height aŝ udu&5$p@0#212p@0#%/2.

A slightly different way to check the agreement betwe
the analytical predictions and the simulation results for
single-step PDF, is to compareX(T,H) as given by Eq.~18!
with the same quantity obtained from the simulations un
the assumption that Eq.~3! holds. From this equation for th
PDF, usingZ(0) from Eq. ~6!, it follows that X is given in
terms ofp@0# asX5$12p@0#%/$11p@0#%, and in terms of

FIG. 3. Log-log plots of the mean step height^udu& vs timet ~in
MCSS! as predicted by the mean-field equation of motion for
single-step PDF, Eq.~13! ~solid curves!, and by dynamic MC simu-
lations ~crossed error bars indicating statistical standard errorst
and ^udu&). From bottom to top, the results shown are forH/J
50, 1, 2, 3, and 10@MC results forH/J510 in part~b! only#. ~a!
T50.2Tc . ~b! T50.6Tc .
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^udu& as X5A11^udu&222^udu&21. Both these MC esti-
mates forX(T,H) are shown in Fig. 5~b!. Again, the agree-
ment is excellent. The slight deviations of the estimate ba
on ^udu& for large H are probably due to the fact that da
were only recorded in separate bins forudu,64, so that the
calculated average becomes inaccurate whenever hi
steps cannot be ignored. The estimate based onp@0# does
not suffer from this problem. However, the slight discre
ancy between both MC estimates on the one hand
Eq. ~18! on the other, which is seen betweenH/J50.5 and 2
for T50.2Tc , is probably a real effect.

C. Stationary interface velocities

In this section we compare the simulated interface velo
ties with the analytical approximation, Eq.~10!. Figure 6
shows the normal velocity vsH for f50. Included are both
the linear-response approximation~i.e., X5e22bJx) and the
nonlinear-response result withX(T,H) from Eq. ~18!. Over-
all, there is excellent agreement between the MC results
the nonlinear-response theory, while the linear-response
proximation seriously underestimates the velocity, especi
at the lower temperature. As for the Ising model with ha
Glauber dynamics studied in Ref.@7#, these results show tha
the latter approximation is clearly inadequate, and we
clude no further linear-response results in this paper.~The
apparent agreement between the linear-response approx
tion and the simulations for largeH/J is simply a conse-
quence of the fact that the normal velocity is bound

FIG. 4. MC ~data points! and analytical~solid lines! results for
the stationary single-step PDF, shown on logarithmic scale vsd.
The fields areH/J50 ~filled squares!, 0.5 ~filled triangles!, 1.0
~filled stars!, 1.5 ~filled diamonds!, 2.0 ~empty squares!, 2.5 ~empty
triangles!, and 3.0~empty stars!. ~a! T50.2Tc . ~b! T50.6Tc .
6-7
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by unity for the SOS model. This isnot the case when SOS
violating transitions are allowed. In this case the line
response approximation differs significantly from t
nonlinear-response result and the simulations for str
fields, as shown in Fig. 2 of Ref.@7#.! A slight disagreemen
between the simulations and the analytical predictions
seen at 0.2Tc in the same range of field values as forX(T,H)
obtained from the single-step PDF in Sec. IV B.

The dependence of the normal velocity on the tilt anglef
is shown in Fig. 7 for several values ofH/J between 0.1 and
3.0. At T50.2Tc the anisotropy undergoes a gradual chan
from increasing withf in agreement with the polynuclea
growth model at small angles and the single-step model
larger angles at weak fields, to Eden-type inverse anisotr
@33–35# at strong fields@Fig. 7~a!#. At T50.6Tc , on the

FIG. 5. ~a! Average stationary step height^udu&, shown on loga-
rithmic scale vsH for f50 at T50.2Tc and 0.6Tc . The curves
represent the theoretical result. The MC data were obtained dire
by summation over the simulated single-step PDFs~filled symbols!
and from the probability of zero step height~empty symbols!. See
text for details. Curve with filled circles and empty squares,T
50.2Tc . Curve with filled triangles and empty circles,T50.6Tc .
~b! The stationary PDF width parameterX(T,H) vs H, the analyti-
cal result Eq.~18! ~curves! and estimates based on MC simulatio
results withf50 for p@0# ~empty symbols! and for ^udu& ~filled
symbols!. See text for details. Curves and symbols have the s
interpretations as in~a!. In this and all the following figures, the
statistical uncertainty is much smaller than the symbol size.
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other hand, inverse anisotropy is found for the stron
fields, growing gradually more pronounced with increasi
H @Fig. 7~b!#, while for the weakest fields studied the velo
ity is nonmonotonic in tanf @Fig. 7~c!#. The agreement be
tween the simulations and the analytical results is excel
everywhere.

The temperature dependence of the normal interface
locity is shown in Fig. 8 for several values ofH/J between
0.2 and 3.0. The agreement between the simulations and
analytical results is excellent everywhere. This figure sho
clearly that asT is lowered, the velocity changes increasing
steeply from zero to unity atH/J52, developing a step dis
continuity at T50. This result could also have been su
pected by comparing Figs. 6~a! and 6~b!.

D. Spin-class populations and skewness

A closer look at the performance of the mean-field a
proximation for the interface structure is provided by t
mean spin-class populations. The analytical predictions
the class populations are based on the assumption that d
ent steps are statistically independent. A comparison of
simulation results with the analytical predictions therefo
gives a way of testing this assumption.

The six mean class populations,^n(01s)&, ^n(11s)&, and
^n(21s)& with s561 are shown vsH in Fig. 9 forf50 and
T50.2Tc and 0.6Tc . At both temperatures the analytical a
proximations follow the average of the populations fors5
11 ands521 quite well, but at intermediate fields in pa
ticular, the populations in front of the surface (s521) and

tly

e

FIG. 6. The average stationary normal interface velocity^v'& vs
H for f50. The MC results are shown as data points, the line
response results as dashed curves, and the nonlinear-respon
sults as solid curves.~a! T50.2Tc . ~b! T50.6Tc .
6-8
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behind it (s511) are distinctly different.
The skewness between the spin populations on the lea

and trailing edges of the interface are a consequence of s
range correlations between neighboring steps, and it is q
commonly observed in driven interfaces. This is the ca
even when thelong-rangecorrelations vanish as they do fo
interfaces in the KPZ dynamic universality class, to whi

FIG. 7. The average stationary normal interface velocity^v'& vs
tanf for several values ofH. MC data are represented by da
points, and analytical results by solid curves.~a! T50.2Tc . ~b! T
50.6Tc . In parts~a! and~b!, the values ofH/J are~from below to
above!, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0@in ~b! only#. ~c! H/J
50.1 for T50.6Tc , shown on a magnified scale to reveal the no
monotonic dependence on tanf for this very weak field.
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the present model belongs for all finite, nonzero values ofH.
Such skewness was also observed in our study of the I
model in Ref.@7#, but in that case it was difficult to separa
it from the effects of bubbles and overhangs. Skewness
also been observed in several other SOS-type models,
as the body-centered SOS model studied by Neergaard
den Nijs@18#, the model for step propagation on crystal su
faces with a kink-Ehrlich-Schwoebel barrier studied
Pierre-Louiset al. @19#, and a model for the local time hori
zon in parallel MC simulations studied by Kornisset al. @20#.
~However, no skewness is observed for the soft Glauber
namic, a result which may be general for soft dynamics.! The
correlations associated with the skewness generally lead
broadening of protrusions on the leading edge~‘‘hilltops’’ !,

-

FIG. 8. The average stationary normal interface velocity^v'& vs
T for f50. MC data are represented by data points, and analy
results by solid curves. From below to above, the values ofH/J are
0.2, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0.

FIG. 9. Mean stationary class populations^n( jks)& vs H for
f50. ~a! T50.2Tc . ~b! T50.6Tc . From top to bottom at the left
edge of both parts, the classes are 01s, 11s, and 21s with squares
representing MC data fors511 and triangles fors521. The
analytic approximations are indicated by the solid curves. Note
different vertical scales in the two parts.
6-9
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while those on the trailing edge~‘‘valley bottoms’’! are
sharpened@18#, or the other way around@20#. In terms of
spin-class populations, the former corresponds to^n(212)&
.^n(211)& and^n(111)&.^n(112)&. The relative skew-
ness can therefore be quantified by the two functions,

r5
^n~212 !&2^n~211 !&

^n~212 !&1^n~211 !&
, ~20!

introduced in Ref.@18#, and

e5
^n~111 !&2^n~112 !&

^n~111 !&1^n~112 !&
. ~21!

These two skewness parameters are shown together in
10. The relative skewness is seen to be considerably stro
at the lower temperature. This temperature dependenc
especially pronounced forr.

Yet another way to visualize the skewness is to cons
the joint two-step PDF,p@d(x),d(x11)#. Logarithmic con-
tour plots of this quantity for different values ofH are shown
in Fig. 11 for f50 at T50.6Tc . It is clearly seen how the
contours change withH. For H50 a symmetric diamond
shape with equidistant contours indicates statistical indep
dence with single-step PDFs given by Eq.~3!. For stronger
fields we find shapes that are elongated in the second q
rant @d(x),0, d(x11).0# and foreshortened in the fourt
quadrant@d(x).0, d(x11),0#. This shape indicates tha
large negatived(x) tend to be followed by large positiv
d(x11) ~sharp valleys!, while positived(x) tend to be fol-
lowed by smaller negatived(x11) ~rounded hilltops!.

FIG. 10. The two relative skewness parametersr ~triangles! and
e ~squares!, defined in Eqs.~20! and~21!, respectively. The param
eters are shown vsH for f50. ~a! T50.2Tc . ~b! T50.6Tc . Note
the different vertical scales in the two parts.
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While the contour plots for interfaces withf50 are al-
ways symmetric about the lined(x11)52d(x), as seen in
Fig. 11, forf.0 corresponding tôd&.0, most of the prob-
ability is concentrated in the first quadrant@d(x).0, d(x
11).0#, as shown forf545° at T50.6Tc in Fig. 12. In
the case of tilted interfaces, too, the symmetry about the
d(x11)5d(x), which is obeyed forH50 @Fig. 12~a!#, is
gradually destroyed with increasing field@Fig. 12~b! and
12~c!#. We have not been successful in attempts to constr

FIG. 11. Contour plots of log10p@d(x),d(x11)# for f50 at
T50.6Tc . ~a! H/J50. ~b! H/J51.0. ~c! H/J52.0. Note the dif-
ferent scales in the three parts. See discussion in the text.

FIG. 12. Contour plots of log10p@d(x),d(x11)# for f545° at
T50.6Tc . ~a! H/J50. ~b! H/J51.0. ~c! H/J52.0. Note the dif-
ferent scales in the three parts. See discussion in the text.
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an analytical approximation which describes this evolut
of the joint two-step PDF with increasing field.

V. CONCLUSION

In this paper, we have considered in detail the microstr
ture of an unrestricted solid-on-solid~SOS! interface with
Glauber dynamics, which is driven far from equilibrium b
an applied field. The microstructure is of interest becaus
determines a number of interface properties, such as mob
and chemical reactivity. We adapted to this model a me
field, nonlinear-response approximation previously dev
oped for driven Ising interfaces without the SOS restrict
@7#. In comparison to the Ising driven interface, which leav
bubbles of the unstable phase in its wake and exhibits ‘‘ov
hangs,’’ the SOS interface is a relatively simple object. T
absence of overhangs and of fluctuations in the stable
unstable phases~bubbles behind and in front of the interfac!
makes the SOS interface more suitable for description
terms of a mean-field type model. Moreover, unlike the Is
model, in which there are several effects that simultaneou
contribute to the inaccuracy of the approximate treatme
the simpler SOS structure makes it possible to identify
short-range correlations as the only significant factor caus
deviations between the true interface behavior and the m
field theory.

To study the microstructure of the interface in detail, w
investigated the interface velocity as a function of drivi
field, temperature, and angle relative to the lattice axes.
also studied the local shape of the interface in terms of
spin-class populations and the probability density for in
vidual steps in the interface. In essentially all cases we fo
excellent agreement between our theoretical description
the stationary moving interface and the results of our
namic MC simulations.

The microstructure of the moving interface depends c
cially on the details of the stochastic dynamics, and for
Glauber dynamic used here, the average height of a ste
the interface was found to increase strongly with the app
field. Our theory predicts that this should be the case~with
quantitative variations depending on the particular dynam!
for any dynamic in which the single-spin transition rates c
not be factorized into a part that depends only on interac
energies and another that depends only on the applied
~hard dynamics@16#!. In contrast, for factorizing~soft! dy-
namics the interface structure should remain independen
the field. This was recently confirmed for the unrestrict
SOS interface by MC simulations@15#. It is therefore impor-
tant to use great caution in drawing conclusions about
microstructure of driven interfaces, based on dynamic M
s
er
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simulations. For such conclusions to be valid, the dynam
must be chosen appropriately to the physical system of in
est. The hard type of dynamics would appear to be part
larly suited for certain interfaces in magnetic or dielect
systems, where the local order parameter is not conser
The dynamics of such interfaces have in the past often b
studied with standard Glauber or Metropolis dynamics. S
dynamics would seem more appropriate for solidification
adsorption problems where the driving force is a chemic
potential difference@36,37#, although diffusion often plays a
complicating role in these cases.

To avoid any misunderstandings, we emphasize that
soft/hard classification refers to thedynamic, andnot to the
Hamiltonian. As discussed both in this paper and in R
@15#, a system described by a particular Hamiltonian co
evolve according to a hard or a soft dynamic, depending
the physical characteristics of the transition processes
more thorough discussion of the physical aspects of the
ferences between hard and soft dynamics will be include
a forthcoming paper@38#.

One aspect of the interface dynamics not completely c
tured by our model is, of course, the short-range correlatio
Namely, within the mean-field approximation used here,
dividual steps of the interface are assumed to be statistic
independent. However, for increasing fields the interface
dergoes a gradual breakdown of up/down symmetry. Thi
clearly seen in our simulations here, as well as in seve
other examples of driven interfaces@7,18–20#. It would
seem likely that one could construct a mean-field approxim
tion at the two-step level, which might be able to predict th
skewness for hard dynamics, as well as its absence for
dynamics. However, such a theory has not yet been de
oped.

Finally we note that, by comparison with the theoretic
and numerical results presented here and in Refs.@7# and
@15#, experimental observations of the driving-force depe
dence of interface step heights and their correlations
steady-state moving interfaces could add to our understa
ing of the underlying dynamic processes.
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